1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the tide-disco library.
// You should have received a copy of the MIT License
// along with the tide-disco library. If not, see <https://mit-license.org/>.
//! Interfaces for methods of accessing to state.
//!
//! A common pattern is for the `State` type of an [App](crate::App) to enable some form of interior
//! mutability, with the option of read-only access, such as [RwLock]. Route handlers will then
//! acquire either shared immutable access or exclusive mutable access, where the access mutability
//! is linked to the HTTP method of the route -- a GET method implies immutable access, for example,
//! while a POST method implies mutable access.
//!
//! [tide-disco](crate) supports this pattern ergonomically for any state type which has a notion of
//! reading and writing. This module defines the traits [ReadState] and [WriteState] for states
//! which support immutable and mutable access, respectively, and implements the traits for commonly
//! used types such as [RwLock], [Mutex], and [Arc]. Of course, you are free to implement these
//! traits yourself if your state type has some other notion of shared access or interior
//! mutability.
use crate::http;
use async_std::sync::{Arc, Mutex, RwLock};
use async_trait::async_trait;
use futures::future::BoxFuture;
use std::fmt::{self, Display, Formatter};
use std::str::FromStr;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Method {
Http(http::Method),
Socket,
Metrics,
}
impl Method {
/// The HTTP GET method.
pub fn get() -> Self {
Self::Http(http::Method::Get)
}
/// The HTTP POST method.
pub fn post() -> Self {
Self::Http(http::Method::Post)
}
/// The HTTP PUT method.
pub fn put() -> Self {
Self::Http(http::Method::Put)
}
/// The HTTP DELETE method.
pub fn delete() -> Self {
Self::Http(http::Method::Delete)
}
/// The Tide Disco SOCKET method.
pub fn socket() -> Self {
Self::Socket
}
/// The Tide Disco METRICS method.
pub fn metrics() -> Self {
Self::Metrics
}
/// Check if a method is a standard HTTP method.
pub fn is_http(&self) -> bool {
matches!(self, Self::Http(_))
}
/// Check if a request method implies mutable access to the state.
pub fn is_mutable(&self) -> bool {
match self {
Self::Http(m) => !m.is_safe(),
Self::Socket => true,
Self::Metrics => false,
}
}
}
impl From<http::Method> for Method {
fn from(m: http::Method) -> Self {
Self::Http(m)
}
}
impl Display for Method {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Http(m) => write!(f, "{}", m),
Self::Socket => write!(f, "SOCKET"),
Self::Metrics => write!(f, "METRICS"),
}
}
}
pub struct ParseMethodError;
impl FromStr for Method {
type Err = ParseMethodError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"SOCKET" => Ok(Self::Socket),
"METRICS" => Ok(Self::Metrics),
_ => s.parse().map_err(|_| ParseMethodError).map(Self::Http),
}
}
}
/// A state which allows read access.
///
/// Implementations may allow _shared_ read access (for instance, [RwLock]) but some implementations
/// do not (for instance, [Mutex]). Therefore, do not assume that [read](Self::read) is reentrant,
/// or you may have a deadlock.
#[async_trait]
pub trait ReadState {
/// The type of state which this type allows a caller to read.
type State: 'static;
/// Do an operation with immutable access to the state.
///
/// # Limitations
///
/// The reason this function takes a visitor function to apply to the state, rather than just
/// returning a reference to the state, is to allow implementations that cannot provide a plain
/// reference directly. For example, [RwLock] can produce a smart reference, a
/// [RwLockReadGuard](async_std::sync::RwLockReadGuard), but not a plain reference.
///
/// Note that GATs may allow us to make this interface more ergonomic in the future. With stable
/// GATs, this trait could be written like
///
/// ```ignore
/// trait ReadState {
/// type State: 'static;
/// type Reference<'a>: 'a + Deref<Target = Self::State>;
/// fn read(&self) -> Self::Reference<'_>;
/// }
/// ```
///
/// [Like many function parameters](crate#boxed-futures) in [tide_disco](crate), the
/// function to apply to the state is also required to return a _boxed_ future.
async fn read<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T;
}
/// A state which allows exclusive, write access.
#[async_trait]
pub trait WriteState: ReadState {
/// Do an operation with mutable access to the state.
///
/// # Limitations
///
/// The reason this function takes a visitor function to apply to the state, rather than just
/// returning a mutable reference to the state, is to allow implementations that cannot provide
/// a plain mutable reference directly. For example, [RwLock] can produce a smart reference, a
/// [RwLockWriteGuard](async_std::sync::RwLockWriteGuard), but not a plain mutable reference.
///
/// Note that GATs may allow us to make this interface more ergonomic in the future. With stable
/// GATs, this trait could be written like
///
/// ```ignore
/// trait WriteState {
/// type State: 'static;
/// type MutReference<'a>: 'a + DerefMut<Target = Self::State>;
/// fn write(&self) -> Self::MutReference<'_>;
/// }
/// ```
///
/// [Like many function parameters](crate#boxed-futures) in [tide_disco](crate), the
/// function to apply to the state is also required to return a _boxed_ future.
async fn write<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a mut Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T;
}
#[async_trait]
impl<State: 'static + Send + Sync> ReadState for RwLock<State> {
type State = State;
async fn read<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
op(&*self.read().await).await
}
}
#[async_trait]
impl<State: 'static + Send + Sync> WriteState for RwLock<State> {
async fn write<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a mut Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
op(&mut *self.write().await).await
}
}
#[async_trait]
impl<State: 'static + Send + Sync> ReadState for Mutex<State> {
type State = State;
async fn read<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
op(&*self.lock().await).await
}
}
#[async_trait]
impl<State: 'static + Send + Sync> WriteState for Mutex<State> {
async fn write<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a mut Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
op(&mut *self.lock().await).await
}
}
#[async_trait]
impl<R: Send + Sync + ReadState> ReadState for Arc<R> {
type State = R::State;
async fn read<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
(**self).read(op).await
}
}
#[async_trait]
impl<W: Send + Sync + WriteState> WriteState for Arc<W> {
async fn write<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a mut Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
(**self).write(op).await
}
}
/// This allows you to do `api.get(...)` in a simple API where the state is `()`.
#[async_trait]
impl ReadState for () {
type State = ();
async fn read<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
op(&()).await
}
}
/// This allows you to do `api.post(...)` in a simple API where the state is `()`.
#[async_trait]
impl WriteState for () {
async fn write<T>(
&self,
op: impl Send + for<'a> FnOnce(&'a mut Self::State) -> BoxFuture<'a, T> + 'async_trait,
) -> T {
op(&mut ()).await
}
}